“
“Arsenic (As) mobilization
in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater GDC-0973 in vitro of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron
acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic selleck kinase inhibitor characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change CA3 price in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe
reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that indigenous bacteria in oligotrophic groundwater possess adequate catabolic ability to mobilize As by a cascade of reactions, mostly linked to bacterial necessity for essential nutrients and detoxification.”
“Extrinsic cues and intrinsic competence act in concert for cell fate determination in the developing vertebrate retina. However, what controls competence and how precise is the control are largely unknown. We studied the regulation of competence by examining the order in which individual retinal progenitor cells (RPCs) generate daughters. Experiments were performed in Xenopus laevis, whose full complement of retinal cells is formed in 2 days. We lineage-labeled RPCs at the optic vesicle stage. Subsequently we administered a cell cycle marker, 5-bromodeoxyuridine (BrdU) at early, middle or late periods of retinogenesis.